

Session Overview Session 2

- Structural Shoring Concepts • Types (Interior Continued)

 - Types (Exterior)
 Cribbing
 Sloped Floor Shore
- · Shoring Size-up

Test

A.

· Hands-on Stations.

2

Session Objectives Session 2

- Identify Components of Interior and Exterior Emergency Shoring Using Lumber and Alternative Shoring Systems
- Understand the Construction and Use of Cribbing
- Describe the Considerations Involved With Shoring Size-up
- Demonstrate The Use of Tools and Equipment To Build Emergency Shoring.

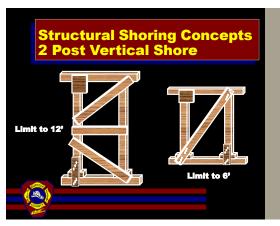
(2.)

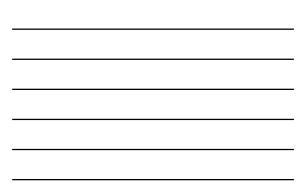
Structural Shoring Concepts Double "T" Shore

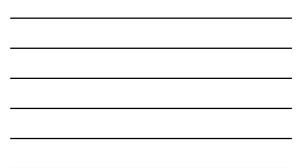
- Used when more stability or support is required
- · Prefabricated and walked into position
- Maximum 367 header
- · Posts can be 18" or 24" apart · Top/Mid gusset plates are 12" x 24" – ¾" ply
- · Upwards of twice the strength of a single T shore
- · Shore height less than 6' use top gusset only.

5

A.







14

Structural Shoring Concepts Laced Post Shore

- The strongest and most stable shore we can construct
- Can be utilized as a safe haven area when necessary
- 4x4's and 6x6's
- Midpoint bracing at 4'
- \cdot 5' maximum spacing.

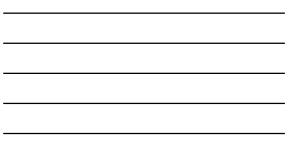
· Approx. height – 12'

Built to FOG specs.

x4 posts

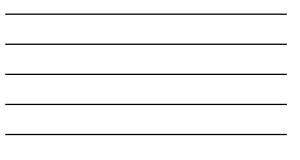
Design load - 32,000

nitial test load - 38,000


Structural Shoring Concepts Horizontal Wall Shore

- ·Used to stabilize passageways
- ·2 3 support struts
- •Weight of debris will determine size and number of struts required.

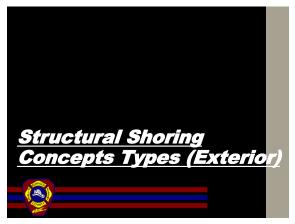
20

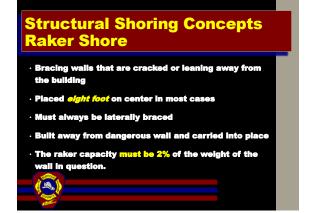


Structural Shoring Concepts Door Shore

28

29




<section-header>

31

32

Structural Shoring Concepts Raker Shore

37

Structural Shoring Concepts Solid Sole Raker

- · Raker shore of choice
- · Generally erected at 45° angle
- \cdot Can be used on solid surface or soil
- · Prefabricate and walk into position.

38

Structural Shoring Concepts Solid Sole Raker

40

Structural Shoring Concepts Raker Test

43

44

Structural Shoring Concepts Split Sole Raker

- · Raker of second choice
- \cdot Used mainly in soil conditions
- \cdot Can be utilized where debris is blocking the base of the wall
- · Partially preassembled.

45

A

 Structural Shoring Concepts

 Flying Raker

 Image: Concept of the structure

 Image: Concent of the structure

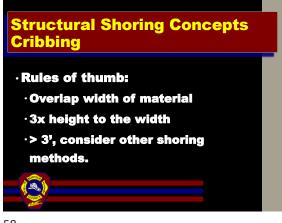
52

53

Structural Shoring Concepts
Flying Shore

55

56

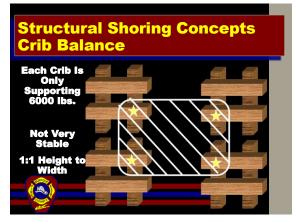

Structural Shoring Concepts Cribbing

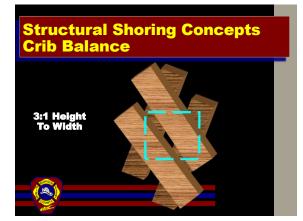
· Floor loads:

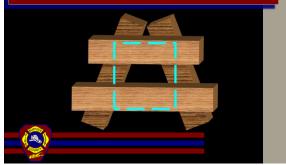
- Contents can weigh upwards of
 25 35 lbs per cubic foot
- Collapsed debris ≈ 125 lbs. per cubic foot.

57

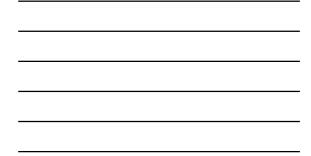
A.







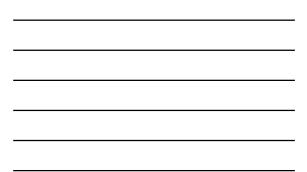
Structural Shoring Concepts Crib Balance


67

68

Structural Shoring Concepts Crib Level

70



71

Structural Shoring Concepts Crib Level



Structural Shoring Concepts Cribbing Test

/

• **4**x4

4' cribbing length

· Approx. 8' 6" height

· Design Load:

A.

- · 24,000 lbs.
- · 6,000 lbs./contact point

Initial Test Load:
 28,000 lbs,

77

Structural Shoring Concepts Cribbing Strength

80

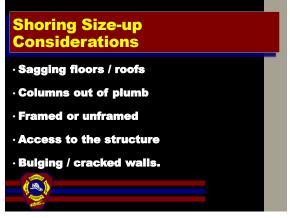
86

Shoring Size-up Considerations

- Missing structural items
- · Structural fire damage
- Age of structure
- Condition of structure
- · Six-sided approach.

87

(2)



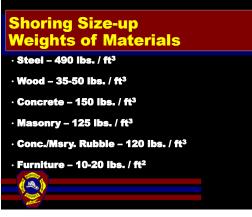
Shoring Size-up Considerations

- · Walls out of plumb
- · Strained structural items
- Construction type
- Beam connections
- \cdot Door and window access / condition.

89

92

Shoring Size-up Considerations


- · Separating walls
- · Potential for vibration
- · Unprotected steel beams
- Trusses

(2)

Void access

· Bearing wall stability.

95

Shoring Size-up Weights of Materials

- · Steel Deck/Coonc. Fill 50 lbs. / ft²
- \cdot 8" Concrete Reinforced Block 60 lbs. / ft²
- · Curtain Walls 10-15 lbs. / ft²
- · Wood/Metal Stud Walls 10-15 lbs. / ft²
- \cdot Concrete Floors 90-150 lbs. / ft².

96

A.

